
Exact diagonalisations of open spin-1 chains

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 5737

(http://iopscience.iop.org/0953-8984/2/26/010)

Download details:

IP Address: 171.66.16.103

The article was downloaded on 11/05/2010 at 05:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/26
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys.: Condens. Matter 2 (1990) 5737-5745. Printed in the UK 

Exact diagonalisations of open spin- 1 chains 

Tom Kennedy 
Department of Mathematics, University of Arizona, Tucson, A Z  85721, USA 

Received 3 January 1990 

Abstract. We numerically compute the two lowest eigenvalues of finite length spin-1 chains 
with the Hamiltonian H = X,[S ,  S,, I - p(S, S,, ,)'I and open boundary conditions. For a 
range of /3, including the value 0, we find that the difference of the two eigenvalues decays 
exponentially with the length of the chain. This exponential decay provides further evidence 
that these spin chains are in a massive phase as first predicted by Haldane. The correlation 
length E of the chain can be estimated using this exponential decay. We find estimates of for 
theHeisenbergchain(P = 0) thatrangefrom6.7 to7.8dependingon how oneextrapolates to 
infinite length. 

1. Introduction 

The antiferromagnetic spin-1 Heisenberg chain has been the subject of numerous 
numerical studies, motivated in large part by Haldane's prediction that this chain has 
radically different properties from the spin4 chain [l]. He argued that the ground state 
of the sp in4  Heisenberg antiferromagnetic chain is in a massive phase if S is an integer 
and in a massless phase if S is a half integer. The massive phase is characterised by a gap 
in the energy spectrum immediately above the ground state energy and an exponential 
decay of the truncated correlation functions. The massless phase is characterised by no 
gap and by a power law decay. 

The ground state of these spin chains has been studied numerically by Monte Carlo 
simulation [2], exact diagonalisation [3,4], and series expansions [5] .  Exact diag- 
onalisation studies usually impose periodic boundary conditions. With these boundary 
conditions the Hamiltonian is invariant under translations, and so one can search for the 
ground state in the subspace of translation invariant states. This reduces the dimension 
of the subspace by a factor roughly equal to the length of the chain. In this paper we use 
exact diagonalisation to study the lowest eigenvalues of the open spin-1 chain with 
Hamiltonian 

for -1 6 /3 6 1. 
There are several values of p where the Hamiltonian (1) is solvable in some sense. 

The most important one for our purposes is p = -4. To see why /3 = -4 is special 
consider the terms in the Hamiltonian associated with a single bond, i.e., 
Si - S i + l  - @(Si This operator has three eigenvalues, a singlet with energy 
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-2 - 4p, a triplet with energy -1 - p, and a quintuplet with energy 1 - p. For /3 > -4 
the singlet has the lowest energy while for p < -4 the triplet has the lowest energy. At 
p = -$, where the singlet and triplet are degenerate, Affleck et a1 [6]  found the ground 
state exactly and rigorously proved that there is a unique infinite volume ground state, 
exponential decay of the truncated correlation functions in the ground state and a gap. 
Another special value of p is p = 1. This model is solvable by the Bethe ansatz and has 
nogap[7]withsoftmodesatk = 0 ,n .WhenP  = -l theoperatorSi.Si+l - p ( S i * S i + J 2  
simply interchanges the spins at sites i andi  + 1. This model [8] has an SU(3) symmetry, 
no gap and soft modes at k = 0,2n/3,4n/3.  

The initial motivation for the present work came from comparing the degeneracy of 
the ground state at p = -4 and = 0. When /3 = -4, the chain with periodic boundary 
conditions (and more than two sites) has a unique ground state, but the chain with open 
boundary conditions has a fourfold degenerate ground state consisting of a singlet and 
a triplet. Loosely speaking, the open chain has a spin-9 degree of freedom at each end. 
These two spin-i’s combine to form the singlet and the triplet. Each of these four ground 
states yields the same infinite volume ground state. For p = 0 Lieb and Mattis [9] proved 
that the ground state of the open chain is a singlet if the number of sites is even and a 
triplet if the number is odd. The present numerical work was begun so as to understand 
what happens to the fourfold degeneracy of the ground state when one varies p from -4 
to 0. 

We find that the two lowest eigenvalues are a singlet and a triplet. For p near -$ the 
difference of these two eigenvalues is quite small and decays exponentially with the 
length of the chain. It is difficult to determine the exact range of p for which this holds, 
but the range appears to include p = 0. It is important to emphasise that our results do 
not in any way contradict Haldane’s prediction of a gap. Based on our understanding of 
the ground states for p = -4, we expect that when p # -4 the four eigenstates associated 
with the two lowest eigenvalues are the same except for boundary effects at the two ends 
of the chain. Thus each of these four states will yield the same ground state in the infinite 
length limit [ 101. The Haldane gap will be the difference between the second and third 
lowest eigenvalues. 

2. Results 

We have only studied the interval -1 6 /3 6 1. First let us consider the interval 
-5 < /3 6 1. Letting L denote the number of sites in the chain, we find that if L is even 
the ground state is a singlet and the next eigenvalue is a triplet. If L is odd the ground 
state is found to be a triplet, with the next eigenvalue a singlet. The difference between 
these two lowest eigenvalues is shown in table 1 for several values of p > -$. For p near 
-4, e.g. p = -0.3, -0.2, these differences are quite small and decrease rapidly with L. 
For p = 0 the difference still clearly decreases to 0 as L + CO, but for p = 0.4 the decrease 
of the difference with L is quite slow. 

To see whether or not this eigenvalue difference is decaying exponentially to zero 
we plot t l ~ ~ ( s , - ~ / s ~ )  as a function of 1/L, where sL is the difference in the two lowest 
eigenvalues (figure 1). IfsL decays as exp( - L/E), then this quantity should converge to 
l /E.  If sI decays as 1/LP then this quantity will converge to 0. Thus exponential decay of 
this eigenvalue difference is equivalent to a non-zero intercept of the curves in figure 1 
with the vertical axis. Not surprisingly, figure 1 shows that the points for even values of 
L lie on a different curve from the points for odd values of L. We expect that the 
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Table 1. The difference of the two lowest eigenvalues of the chain with open boundary 
conditions and L sites for several p > -4. 
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0.040809 
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0.020254 
0.014880 
0.010015 
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0.004933 
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0.110734 
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Figure 1. Plot of 1 In(s,_*/sL) as a function of 1/L, where sL is the difference between the 
two lowest eigenvalues. The intersection of these curves with the vertical axis gives the 
inverse correlation length, so several correlation lengths are marked on the vertical axis. 
The horizontal axis is 1/L, but the labels are values of L.  

correlation length in the two cases should be the same, i.e. the two curves should have 
the same intercept with the vertical axis. This difference between even and odd length 
chains is the reason we consider the ratio sL - 2 / ~ L  rather than sL - l / ~ L .  

The value of /3 closest to -5 for which a curve is shown in figure l ( a )  is /3 = -0.3. If 
we extrapolate this curve to L = the intercept with the vertical axis is clearly non-zero 
and the correlation length is fairly short, about 1.6. For /3 = 0 the intercept is much 
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Table 2. Various estimates of the inverse correlation length. The different estimates come 
from different methods of extrapolation to the infinite length limit and are explained in the 
text. The * indicates values for P for which the eigenvalues for L = 14 were computed. 

Linear Linear Linear Quad 
P Crude even odd LS LS 

-0.33 
-0.32 
-0.31 
-0.30 
-0.20* 
-0.10 

o.oo* 
0.10 
0.20 
0.40 
0.60 
0.80 
1 .oo 

0.880 
0.762 
0.685 
0.627 
0.355 
0.243 
0.200 
0.149 
0.125 
0.096 
0.078 
0.067 
0.060 

0.966 
0.784 
0.700 
0.641 
0.366 
0.207 
0.128 
0.069 
0.046 
0.024 
0.014 
0.008 
0.004 

0.954 
0.777 
0.691 
0.630 
0.335 
0.204 
0.128 
0.083 
0.056 
0.028 
0.016 
0.009 
0.006 

0.961 
0.781 
0.696 
0.636 
0.349 
0.205 
0.128 
0.075 
0.050 
0.026 
0.015 
0.008 
0.005 

0.891 
0.751 
0.685 
0.631 
0.370 
0.245 
0.150 
0.082 
0.050 
0.021 
0.009 
0.003 

-0.001 

smaller, but the curve would have to change drastically for larger values of L in order 
for the curve to have a zero intercept. (Note that the curvesfor p = 0 are slightly convex.) 
Although the intercept appears to be non-zero, the correlation length for p = 0 is rather 
long, between 6 and 8. In figure l(b) we see that as p+ 1 the intercept continues to 
decrease (the correlation length increases). Whether the Haldane phase ends at some 
p, < 1 or at the Bethe ansatz point, p = 1, has been the subject to some controversy. 
(See [4] and references therein for a discussion of this point.) Depending on how one 
extrapolates the curves in figure 1(b), one can conclude that pc is anywhere from 0.4 to 
1.0, so our results cannot shed any light on this question. Figure l(b) does show that if 
the massive phase extends all the way to /3 = 1, then the correlation length in the interval 
0.4 s p < 1 is quite large. 

To extract a value for the correlation length from our data we have tried several 
methods of extrapolating to L = (Table 2). A very crude method of estimating 5 ,  
which does not involve any extrapolation, is 1/5 = ln(s,/s,)/(L - 4) where L is the 
length of the longest chain we compute. This estimate of 5 is shown in the column 
labelled ‘crude’ in table 2. The simplest extrapolation procedure is to take the straight 
line through the two points in figure 1 corresponding to the two largest even (or odd) 
values of L. For most values of p this means taking the lines through the points at L = 
11,13 and L = 10,12. The two resulting values of 5 are shown in table 2 in the columns 
labelled ‘linear even’ and ‘linear odd’. (For a few values of /3 we have computed the 
eigenvalues for L = 14. These values of /3 are marked with an * in table 2.) 

Two other extrapolation methods are based on the assumption that the curves for 
even and odd values of L have the same intercept. Using the largest four values of L 
(10, 11, 12, and 13 in most cases) we find the two lines with the same intercept which 
best fit the four points. (There are three free parameters, the intercept and the two 
slopes, so we use a least squares fitting procedure to find the best two lines.) This estimate 
of 5 is referred to as ‘linear LS’ in table 2. Finally we use the six largest values of L to find 
the best fitting pair of parabolas with the same intercept with the vertical axis. The result 
is shown in the column labelled ‘quadratic LS’ in table 2. 
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Figure 2. The inverse correlation length 
as a function of the parameter p in the 
Hamiltonian (1). (The labels on  the ver- 
tical axis are correlation lengths rather 
than inverse correlation lengths.) The 
squares are the 'crude' estimates of the 
inverse correlation length described in the 
text. The vertical bars for p > -4 run from 
the smallest to the largest of the estimates 
of the inverse correlation length that we 
obtain from various methods of extrapo- 
lating to the infinite length limit. The X 
represents the exact value of In 3 at p = 

1 3 .  _-  

The usual definition of the correlation length would use the exponential decay of the 
two-point function. Although we expect that the correlation length we are computing is 
the same as this more standard definition, it is not inconceivable that they are different. 
The usual definition of the correlation length is difficult to compute numerically since 
one must worry about finite length effects. Moreo [3] computed the two-point function 
at a distance L in a periodic ring with 2 L  sites. She found a correlation length at p = 0 
of approximately 5 ,  but it should be emphasised that since the largest L was 16, this 
estimate is based on distances of no more than eight lattice spacings. Another approach 
to numerically computing the correlation length is to study the convergence of the 
ground state energy per bond to its infinite length limit. In a massive phase this con- 
vergence should be exponential. Again, we expect this correlation length to be the same 
as the other definitions, but it could be different. Affleck [ l l ]  used this approach and 
previously obtained exact diagonalisation and Monte Carlo calculations of the energy 
for up to 32 sites to estimate that the correlation length is 4.8. Zhang et aZ[12] used this 
approach and exact diagonalisation results up to 16 sites and estimated the correlation 
length to be 3.3. 

It is important to note that power law corrections to exponential decays can make a 
large difference in the estimate of the correlation length. (Ignoring such power law 
corrections is like extrapolating figure 2 to L = = by simply drawing a horizontal line 
through the last point.) If the eigenvalue differences, decays as exp( - L/g)/Lp then the 
plot of 4 ln(sL-2/sL) versus 1 / L  will be linear for large L with slopep. Using a power law 
correction of L-'lL and the same numerical data Affleck [13] found a correlation length 
of 7.2.  It is worth noting that one advantage of our method of estimating the correlation 
length is that the quantity we are using decays to 0. If one uses the energy per bond, one 
must fit for the infinite length limit of this quantity as well as the correlation length. 

Figure 2 shows the inverse correlation length as a function of /3. With the exception 
of the 'crude' method, the various estimates of 2 j  are fairly close, so we do not attempt 
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Table 3. The difference of the two lowest eigenvalues for several p between -4  and - 1. 

L 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

- 
/3 = -0.40 

0.075525 
0.010584 
0.007178 
0.007153 
0.003389 
0.000849 
0.00013 1 
0.000268 
0.000157 
0.000051 

/3= -0.50 

0.190628 
0.07 1468 
0.104629 
0.059699 
0.004440 
0.024437 
0.017035 
0.002529 
0.004593 
0.004438 

/3 = -0.60 

0.309201 
0.239268 
0.251241 
0.150639 
0.087142 
0.123165 
0.074507 
0.032294 
0.060266 
0.037 133 

/3 = -0.80 

0.520651 
0.628191 
0.486708 
0.358247 
0.383921 
0.340393 
0.263762 
0.269265 
0.258896 
0.204449 

to plot them individually. Instead we have plotted a box for the ‘crude’ estimate and 
plotted a vertical bar that runs from the largest to the smallest of the other estimates of 
E ,  The exact solution at /3 = -4 has an inverse correlation length of In 3. This point is 
plotted with an x . The inverse correlation length appears to converge to the exact value 
of In 3 as p+ -5, but the most striking feature of this plot is the singular nature of 
this convergence. A small shift in /3 away from -$ can change the correlation length 
significantly. 

The sharp peak in figure 2 suggests the following possible scenario. For p # -$ the 
true inverse correlation length might be significantly less than that shown in figure 2 and 
might not converge to In 3 as /3 + -5. Numerical studies of a finite chain with p near -$ 
would not see the true correlation length but would instead see behaviour similar to that 
at p = -4. If one could increase the length of the chain sufficiently one would then see 
a crossover to the true behaviour. A s p  moves away from -$this crossover would occur 
at smaller L. However, we do not see any evidence of this crossover behaviour in any 
of the curves plotted in figure 1, so we do not believe this scenario is correct. In view of 
the sharpness of the peak in figure 2 this scenario should not be ruled out completely. 

Next we consider the interval -1 S p < -4. Again the two lowest eigenvalues are a 
singlet and a triplet. Their difference is shown in table 3. For /3 near -5 this difference 
is small and decreases quickly as L increases. However, the dependence of the total spin 
of the ground state on the length L and the dependence of the difference of the two 
lowest eigenvalues on L is very different from that for > -4. If we plot h ln(sL-2/sL) 
as a function of 1/L as we did in figure 1 for p > -5, the points do not form nice curves. 
We can still estimate the correlation length with the ‘crude’ method, 1/5 = ln(sL/s4)/ 
L - 4). The results for L = 11, 12 and 13 are shown in table 4. The results for L = 13 
are plotted in figure 2 with a rectangle. As one can see from table 4 this crude estimate 
of the inverse correlation length still shows a large dependence on L. One can try plotting 
this crude estimate as a function of 1/L, but the points show a large scatter and no 
reasonable extrapolation to L = 

The total spin of the ground state is shown in table 5 for various values of L and p. 
Recall that in the interval -5 < /3 S 1 the ground state has total spin 0 if L is even and 1 
if L is odd. For p = -0.34 the ground state has total spin 0 if L is odd and total spin 1 if 
L is even as long as L S 12, but this pattern ends at L = 13. For p = -0.35 this pattern 
also holds for small L ,  but now ends at L = 9. For /3 = -0.6, -0.7, -0.8, -0.9 table 5 

is possible. 
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Table4. Three ‘crude’ estimates of the inverse correlation length f o r p  < -d using maximum 
chain lengths of 11,12 and 13. 

Crude Crude 
P L =  11 L = 12 

Crude 
L = 13 

-1.00 0.056 0.082 
-0.80 0.094 0.087 
-0.60 0.323 0.204 
-0.50 0.618 0.466 
-0.40 0.806 0.772 
-0.35 1.025 1.001 

0.081 
0.104 
0.236 
0.418 
0.810 
1.002 

Table 5. The total spin of the ground state. For P between - f  and 1 the total spin is 0 if the 
length of the chain is even and 1 if is odd. 

P 
~ 

L -0.34 -0.35 -0.38 -0.40 -0.50 -0.60 -0.70 -0.80 -0.90 

3 0  
4 1  
5 0  
6 1  
7 0  
8 1  
9 0  

10 1 
11 0 
12 1 
13 1 

0 
1 
0 
1 
0 
1 
1 
0 
1 
0 
1 

0 
1 
0 
0 
1 
0 
1 
0 
0 
1 
0 

0 
1 
0 
0 
1 
0 
1 
1 
0 
1 
0 

0 
1 
1 
0 
1 
1 
0 
1 
0 
0 
1 

0 0 
1 1 
1 1 
0 0 
1 1 
1 1 
0 0 
1 1 
1 1 
0 0 
1 1 

0 0 
1 1 
1 1 
0 0 
1 1 
1 1 
0 0 
1 1 
1 1 
0 0 
1 1 

shows that the ground state is a singlet if L equals 0 mod 3 and a triplet otherwise. 
This period-3 behaviour is not surprising in light of the nature of the solution [8] at 
/3 = - 1. Of course it is possible that this period-3 behaviour breaks down at some value 
of L beyond those we can compute. This period-3 behaviour suggests that we plot 
41n(s,-3/sL) as a function of 1/L. By analogy with figure 1 we hope to obtain three 
curves corresponding to L = 0, 1 , 2  mod 3. The resulting plots for /3 = -0.6 and -0.8 
are shown in figure 3. There are only two or three points on each of the three curves for 
a given value of /3, so it is difficult to ascertain if the points really do lie on three curves 
and if the three curves have the same intercept with the vertical axis. 

The computation of the two lowest eigenvalues is done as follows. Since the Ham- 
iltonian is isotropic is spin space, each eigenvalue has an eigenvector with total S‘ equal 
to zero, so we restrict our attention to that subspace. For the periodic chain one can use 
the translation invariance of the Hamiltonian to further restrict the dimension of the 
subspace, but this is not the case for the open chain. There are two symmetries of the 
Hamiltonian with open boundary conditions that we can exploit. One is the reflection 
of the chain about its midpoint. The three spin states at a single lattice site can be labelled 
as + , - , and 0 according to the eigenvalues of Sf. The other symmetry is the global spin 
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Figure3. Plot off  In(sL-?/sL) as afunction of 1/L, 
where sL  is the difference between the two lowest 
eigenvalues. The top curve is p = -0.6 and the 
bottom curve isp = -0.8. As in figure 1 the inter- 
section of the curves with the vertical axis gives the 
inverse correlation length, so several correlation 
lengths are marked on  the vertical axis. 

flip that interchanges + and - and leaves0 alone. Together these two symmetries reduce 
the dimension of the subspace we must consider by a factor of 4. More importantly the 
two lowest eigenvectors belong to different symmetry classes. One of them is even under 
both of these symmetries and the other is odd under both of these symmetries. Which is 
which depends on p and the length of the chain. One can extract this information from 
table 5 by the following rule. If the total spin is 0 and the length of the chain is even, or 
the total spin is 1 and the length of the chain is odd, then the eigenstate is even under 
both symmetries. Otherwise it is odd under both of them. Since the two eigenstates we 
seek belong to different symmetry classes we need only to compute the lowest eigenvalue 
in each of the two subspaces. This is done by the power method. 

The calculations were done on a SUN 3/50. As is always the case with exact diag- 
onalisations the time and memory required increase at least geometrically with the 
number of sites. The dimension of the subspace is about 50 000 for L = 13 and about 
150000 for L = 14. The number of non-zero entries in the matrix in about 800000 for 
L = 13 and about 2 500 000 for L = 14. Several hundred iterations of the power method 
are required. The exact number depends on L and p. Most of the time is spent on the 
power method as opposed to setting up the basis and matrix. For L = 13 it takes 13 min 
to set up the basis and matrix and about 6 h to compute a single eigenvalue. For L = 14 
the basis and matrix take 54 min while the power method takes about 60 h. 

3. Conclusions 

For a range of p including /3 = -4 the ground state of the open spin-1 Hamiltonian (1) 
is essentially fourfold degenerate. The two lowest eigenvalues are a singlet and a triplet 
and their difference decreases to zero exponentially fast as the length of the chain goes 
to infinity. Thus the Haldane gap for the open chain is the difference between the second 
and third lowest eigenvalues, not between the first and second lowest. It is difficult to 
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determine exactly where this range of /3 begins and ends, but it appears to include 
p = 0 (the usual Heisenberg Hamiltonian) and may extend all the way between the two 
special values p = -1 and p = 1. The exponential decay of the difference of the two 
lowest eigenvalues provides further evidence that these spin chains are in a massive 
phase. This exponential decay was used to estimate the correlation length of the chain 
as a function of p. While the correlation length is quite short (l/ln 3 )  at the solvable 
point, p = -4, it grows rapidly as one moves away from this special point. At /3 = 0 our 
estimates of the correlation length range from 6.7 to 7.8 depending on how we extrapolate 
to the infinite length limit. 
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Note added in proof, Two recent Monte Carlo simulations [14,15] of the spin-1 chain with /3 = 0 both found 
correlation lengths of 6.2 lattice spacings by studying the decay of the correlation functions. 
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